
Track Shower
Separation

Corey Adams, Yale
3/13/14 Analysis Tools Meeting

Why separate tracks and showers?

This work has been done before but I wanted to try a new method to
combine all of the previous results.

I incorporate (read: steal) a lot of the good ideas that have come before me.

Andrzej, docdb 2990

!2

Method: Artificial Neural
Network

• There are a lot of useful parameters to
make the distinction between tracks
and showers, but they are all related
in a complicated (and unknown) way.

• Proposed solution: use an artificial
neural network to find the patterns
and make the distinction between
tracks and showers.

• Neural networks are excellent tools to
recognize difficult patterns from
complicated examples and extend to
new data.

!3

Implement an Artificial
Neural Network?

• No way. Also didn’t use the root TMVA package.

• Chose to use the Fast Artificial Neural Network
(FANN) library - http://leenissen.dk/fann/wp/

• Library is open source, released under LGPL, has
great documentation, many useful features
implemented.

• Cross platform, easy to build and install, very easy
to create, train, store, and use a neural network.

!4

http://leenissen.dk/fann/wp/

Input to ANN
• Can’t just feed a recob::cluster and associated hit

list into a neural network, so instead determine
(with input from authors of shower and cluster
finding algorithms) a list of parameters that can be
calculated from a cluster and hit list.

• Created a RecoAlg designed to quickly and
efficiently calculate these parameters

• Very minimal larsoft/art dependancies in order to
be portable (to, say, LArLight)

!5

The input parameters
(Feature Vector)

 // This list enumerates the items in the feature vector, in order.!
 // They must all be floats!!
 float N_Hits; // Number of hits in this cluster!
 float axis_dist; // Length along the assumed axis of the cluster!
 float width; // Width of cluster, perp to the axis above!
 float opening_angle; // angle which contains some (high) percent of the hits!
 // from the start point of the cluster!
 float closing_angle; // same as above, but from the end point of the shower!
 float opening_angle_HH; // as above, but only counting hits with charge !
 // above a threshold.!
 float closing_angle_HH; // As above, but only hits with charge above thresh!
 float hit_density_1D; // Number of hits per length, collapsing into 1D!
 float hit_density_2D; // Number of hits divided by (length*width)!
 float end_x; // All showers are shifted to put the "start" at (0,0)!
 float end_y; // this and previous are the x, y points in cm, cm space!
 float mean_x; // the location of the center point, simply using hit peaks!
 float mean_y; // the same!
 float mean_x_charge_wgt; // the center, but weighing each point by charge!
 float mean_y_charge_wgt; // the center, but weighing each point by charge!
 float multi_hit_wires; // the number of wires with more than one hit!
 float N_Wires; // the number of wires with hits in this cluster!
 float eigenvalue_principal; // the principal eigenvalue from PCA!
 float eigenvalue_secondary; // the secondary eigenvalue from PCA!

!6

Use a simple network for now:
N_Hits

axis!
dist

width

open
angle

close!
angle

e.v.!
second.

Track

Shower

inputi

ws,i

wt,i

= Sig.(
X

wt,i ⇤ ini)

= Sig.(
X

ws,i ⇤ ini)

No Hidden Layers
!7

Need to train the network on
known data sets

• Using single particles for now, and creating a “training
list” of input vectors and answers.

• FANN library contains training algorithm to iteratively
change the weights w_i until the overall error is minimized.

#include "fann.h"!
#include <iostream>!!
int main(){!
 std::cout << "Starting the training program ... " << std::endl;!
 struct fann * ann = fann_create_standard(2, 19, 2);!
 fann_train_on_file(ann, "FANN_testing_output.txt", 200000, 500, 0.001);!
 fann_save(ann, "track_shower_discrim.net");!
 fann_destroy(ann);!
 return 0;!
}!

!8

Preliminary Results
• Trained a neural network on single electrons and

muons, and then evaluated performance on new
events. Only looked at big (NHits > 30) clusters.

N Events N Clusters ID’d As
Shower

ID’d As
Track Not ID’d

Single
Electrons 250 1771 1694 38 39

Single
Muons 445 1355 18 1331 6

Success Rate: ~95%

!9

An Electron Failure Event

4 clusters in this view
Results from ANN:
Track (0.74, 0.25)

Shower (0, 1)
Shower (0, 1)
Shower (0, 1)This does actually look

like a track
!10

A Track Failure Event

Michel Electron
tagged as shower

(0.03, 0.99)

!11

Performance

Electrons, time
per cluster

Tracks, time
per cluster

!12

How to use this method
• Created a Reco Alg to handle all interface between

ANN, parameters calc, and so on.
class TrackShowerAlg!
{!
 public:!
 TrackShowerAlg();!
 TrackShowerAlg(std::string annName, float wireToCM, float timeToCM);!
 ~TrackShowerAlg();!!
 void SetANNFile(std::string);!
 void SetConversion(float wireToCM, float timeToCM);!
 void Init();!!
 bool isTrack(art::Ptr<recob::Cluster> &, std::vector<art::Ptr<recob::Hit> > &);!
 bool isTrack(std::vector<art::Ptr<recob::Hit> > &, art::Ptr<recob::Cluster> &);!
 bool isShower(art::Ptr<recob::Cluster> &, std::vector<art::Ptr<recob::Hit> > &);!
 bool isShower(std::vector<art::Ptr<recob::Hit> > &, art::Ptr<recob::Cluster> &);!!
 private:!!
 // Object that calculates parameters:!
 FANNParamsAlg fann_params_alg;!
 // Object that is the neural network!
 struct fann * ann;!!
 std::string FANN_File_Name;!
};!!

Feed in ANN file name,
and conversions to CM.

!
Then can call methods
isTrack(cluster, hitlist)

or
isShower(cluster,

hitlist)

!13

Downsides to this Method
• Need to train algorithm -> No MC truth in data

• Going to need to do a handscan and manually identify tracks and showers on real data.

• I am going to implement a tool for this in LArLight, because it is very fast and has a
good viewer for individual clusters.

• The manual scan will also probably improve the results.

• Physics reason: Won’t get tricked by electrons take start out like tracks, or tracks
that have sections that look like showers

• Machine Learning Reason: Training on a batch file can have pitfalls like local (and
not global) minimums in chi-sq.

• If upstream algorithms change, probably need to retrain the neural network.

• Would need to add another external library (but I don’t think that should really be a problem)

!14

Thanks for listening.
Questions?

!15

